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Structural phase transitions from tetragonal to monoclinic crystal symmetry
induced by an external magnetic field are studied on the basis of a simple three-
level model. It is argued that the model is capable of describing the phenomena
in f-electrons rare earth insulators and solid oxygen. The applied theoretical
method is the equation of motion for the spin and phonon Green functions. The
width of the crystal-field excitation line and the soft-mode phonon velocity are
numerically studied and presented in diagrams.
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1. INTRODUCTION

The studies of structural phase transitions induced by an external magnetic
field is a vast domain of physical investigations in solids. For instance, it
includes the examining of the phase transitions in the perovskites [1, 2], in
insulating rare-earth orthophosphates and orthovanadates with the zircon
structure. The latter compounds are archetypes of the cooperative Jahn–
Teller effect [3–6]. This effect is one of the very few microscopic mecha-
nisms of structural phase transitions which occur in solids [7]. The
4f-electronic states in the mentioned materials are split by the crystalline
electric field, and the external magnetic field further reconstructs 4f-energy
level schemes. The driving force of these structural transitions is the elec-
tron-phonon interaction, which manifests itself as an interaction of the



total 4f-shell with phonons and can be represented, in general, as a phonon-
mediated quadrupole-quadrupole interaction.

The above phenomena are usually described by appropriate spin or
pseudospin Hamiltonians. In most of the papers these Hamiltonians are
treated by the simplest and most crude method—the molecular field
approximation. In the present paper a more sophisticated and powerful
method is applied to a three-level model of the crystal field, which, e.g., can
describe the phenomena in TmAsO4. It is worth adding that while applying
the simple three-level spin Hamiltonian and acoustic phonons, one neglects
the rotational deformations [8]. This model can be, however, also applied
to the description of the solid oxygen in which the three-states system
(singlet-doublet) is of other physical origin [9].

2. MODEL, METHOD, AND CONCLUSIONS

Consider the Hamiltonian,

H=Hph+Hion+Hint (1)

in which the first term stands for mutually noninteracting phonons,

Hph=C
k

wo
k(a+

k ak+1
2), wo

k=v0 |k| (2)

and assume that the phonon operators a+
k create an acoustic transversal

wave of the wave vector k=(k, 0, 0) and the polarization e=(0, 0, 1)
which is connected with the elastic constant c44 of a tetragonal crystal. The
second term in Eq. (1) describes the crystal field energy,

Hion= C
N
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z },

D, h \ 0, J=1 (3)

in which D is the the crystal field splitting constant and h is the strength of
the external magnetic field. The interaction of these two systems is
described by the last term in Eq. (1), which is as follows:
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where g is the magnetoelastic constant and Rm denotes the ion site. The
total system consists of N ions of mass M and of angular momentum of
f-shell J (J±=Jx ± iJy). For the assumed positive value of D, the ground
state of each ion is singlet (|Jz=0P) and, for h=0, the excited state is the
doublet.

It is convenient to introduce the operators a+ and b+ which have
the effect of transforming the ground state into the two upper states:
|0PQ |+1P and |0PQ | − 1P, respectively,

a+=
1

2 `2
(J+Jz+JzJ++J+), Jz=a+a − b+b, (5)

b+=
1

2 `2
(J− − J− Jz − JzJ− ), J2

z =a+a+b+b. (6)

The commutation relations of these raising and lowering operators a, b are

[a+, a]=P1 — 1
2 Jz+

1
2 (3J2

z − 2), (7)

[b, b+]=P2 — 1
2 Jz − 1

2 (3J2
z − 2). (8)

We shall express the dynamical properties of our system in terms of
the frequency (w)-dependent Fourier transforms of the retarded commuta-
tor Green functions: Sa; a+Tw and Sb; b+Tw. To present appropriate
equations, we introduce

O±
1 =a ± a+, O±

2 =b ± b+. (9)

For the Hamiltonian under consideration, the following linear rela-
tions can be be shown to be valid:

Sa; a+Tw=1
4 [SO+
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1 Tw −SO−

1 ; O−
1 Tw

+SO−
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from which follows the self-energy,

Ms(w, h)=1 g

4 `2M
22 1

N
C
k

k2
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k

[OP1Po f1(k, w, h)+OP2Po f2(k, w, h)],

(12)
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related to the the energy level D − hz and Ms(w, −h) to the level D+hz. The
quantities in the above equation are defined below:

f1(k, w, h)=2 coth
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OP1P0=
eh/T − eD/T

eD/T+2 cosh(h/T)
(15)

OP2P0=
eD/T − e−h/T

eD/T+2 cosh(h/T)
. (16)

The self-energy [Eq. (12)] is of physical interest since it includes
information on the broadening of the crystal field excitations caused by the
spin-phonon interaction [Eq. (4)], i.e., their damping. This is, of course,
also related to the shape of the crystal field excitation line. The damping
manifests itself mathematically if the theory is applied up to the second
order in the interaction strength g as in the present paper. In order to
present the final numerical results, we have to perform the summation over
the wavevector k in Eq. (12). For this purpose we assume the Debye model
and analyze the behavior of quantities which are directly or indirectly
measured experimentally.
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The numerical analysis of the self-energy [Eq. (12)] allows us to find
the temperature dependence of the crystal field linewidth, C, for given
values of the external magnetic field strength. The behavior of C in the
vicinity of the structural phase transition is interesting for experimentalists
since this quantity is a measure of the phenomenon known as the critical
slowing down (narrowing of the line), which is usually observed in the
phenomena of the neutron scattering when the system approaches a con-
tinuous phase transition.

In Fig. 1 we present the dependence of the reduced (dimensionless) C

as a function of the temperature at temperatures rather high in comparison
to the transition temperatures. The field strength is, however, of the order
at which the transition occurs. Note that the system is in the tetragonal
phase and it is driven to the monoclinic one by the magnetic field (field-
induced Jahn–Teller effect), the strength of which is presented in the figure
in the units of D (x=h/D). The most interesting finding of these numerical
studies is the fact that the narrowing of the linewidth occurs below a
certain temperature for a given field strength, what manifests itself as a
maximum of our dependences.

As concerns the phonon system the phonon damping manifests itself
within the above perturbation scheme as an effect of the fourth order. Even
for the simple three-level system, which we apply here, consideration of the
shape of the phonon lines is a complicated mathematical problem which
demands a separate paper. Thus, our present paper will be only devoted to
sound propagation problems, which follow from our model within the
second-order perturbation scheme. In order to find the renormalized sound
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Fig. 1. Temperature dependence of the linewidth at the field
strength approaching the crossover of the crystal field energy
levels. The transition temperature is 23.7 mK. Assumed values
of the parameters are: w=10 MHz, D=5 K, the Debye tem-
perature is assumed to be 180 K and G2=0.1 K, and x=h/D.
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velocity (being proportional to the square root of the relevant elastic con-
stant c44), we have to calculate the retarded commutator Green function,

Sfk(t); f+
k (t)T=−ih(t)O[fk(t); f+

k (t)]P, (17)

where

fk=ak+a+
−k. (18)

and h(t) is the step function. The final form of the phonon Green function
is

Sfk; f+
k Tw=

2vok
w2 − k2v2(w)

, (19)

where the sound velocity v as a function of the frequency w is [10]

5v(w)
v0
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2D
5OP2P0

1+x
(1+x)2 − (w/D)2 −OP1P0

1 − x
(1 − x)2 − (w/D)2

6

(20)

with G2=g2/(2Mv0
2).

In Fig. 2 we present the reduced square of the sound velocity as a
function of the temperature. Note that it corresponds to the elastic con-
stant c44 for the tetragonal phase and that the assumed magnitude of the
frequencies w of the order of MHz and GHz is applied by experimentalists
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Fig. 2. Sound velocity vs temperature in the megahertz and
gigahertz frequency region. Assumed values of the parameters
are: D=5 K, G2=0.1 K, and x=0.996.
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[11, 12]. It should be stressed that this figure shows that at least for the
assumed values of the parameters the mode softens at Tc=23.7 mK for
the frequency w=10 MHz and for the frequency w=10 GHz it softens at
the higher temperature Tc=49.5 mK. The present figure shows that the
soft elastic constant c44 is strongly frequency dependent.
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